Wednesday, August 6, 2008

Integral table computation

The raw data:

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

 

The integral data:

E

F

A

B

G

C

D

H

I

 
     The integral rule is that each element in the integral table is sum of upper-left elements( including itself ). e.g,
  • A = a + b + f + g
  • B = a + b + c + f + g + h
  • C = a + b + f + g + k + l
  • D = a + b + c + f + g + h + k + l + m

We can, therefore, simply archive the integral table by 4 "for loop"

for(int j = 0; j < height; j++) 
{
for(int i = 0; i < width; i++)
{
integral[j][i] = 0;
for(int y = 0; y <= j; y++)
{
for(int x = 0; x <= i; x++)
{
integral[j][i] += rawdata[y][x];
}
}
}
}


but it is too inefficiency and consuming too many operations when computing in such simple way . Thus, we can examine the integral table, it can be found that D could be get from the 3 nearest upper-left element A, B, C. So D = m + B + C - A. In addition we must consider the boundary problem, when processing the first row it's just the sum of the current raw data and the left integral data, e.g, F = d + E. The same as above, when processing the first colume it's just the sum of the current raw data and the upper integral data, e.g, H = p + G. Therefore, the computation can be archieved by using only 2 "for loop"



for(int j = 0; j < height; j++) 
{
for(int i = 0; i < width; i++)
{
if((j == 0) && (i == 0))// process the first col and row element
integral[j][i] = rawdata[j][i];
else if((j == 0) && (i != 0))// process the first row element
integral[j][i] = rawdata[j][i] + integral[j][i-1];
// F = d + E
else if((j != 0) && (i == 0))// process the first col elements
integral[j][i] = rawdata[j][i] + integral[j-1][i];
// H = p + G
else // process the normal element
integral[j][i] = rawdata[j][i] + integral[j-1][i] +
integral[j][i-1] - integral[j-1][i-1];
// D = m + B + C - A
}
}


[ Download ]: test file (C::B project)

1 comment:

Anonymous said...

i like......